Strong Doge: Foundational Whitepaper

October 31, 2024

Abstract

Humanity’s right to truth and privacy is at a pivotal moment. As
proprietary Al models emerge, they present themselves as innovative tools,
enhancing productivity and acting as advanced search engines powered
by publicly accessible data. However, beneath this novelty lies a growing
threat: the unchecked harvesting of personal data by financially motivated
big tech companies. This trajectory risks creating a future where users are
exploited for profit, compromising both data privacy and the reliability of
Al-driven services. Centralized infrastructure may expose us to large-scale
data breaches, misinformation, and system failures that could disrupt
personal lives and business operations.

Strong Doge proposes a decentralized solution—a peer-to-peer (P2P)
infrastructure that ensures privacy, transparency, and security in Al. By
leveraging distributed nodes for Al inferences, and enabling Strong Doge-
to-Strong Doge communications, negotiations, and payments, Strong Doge
aims to eliminate centralized control and middlemen. This platform will
be powered by open-source Al models like Facebook’s LLaMA and innova-
tions such as ExoLabs’ sharded AT inference method, ensuring lightweight,
scalable, and transparent Al computations.

To foster early adoption, the Strong Doge network will incentivize
users through points and tokens, bootstrapping the decentralized ecosys-
tem. Strong Doge’s platform for privacy-protecting Al will safeguard
humanity’s right to privacy and truth, powering a future where AI is
uncensorable, secure, and immune to centralized failure.

1 Introduction

Strong Doge is a decentralized, blockchain-based protocol designed to change
the way AI Strong Doges are created, operated, and maintained. By leverag-
ing a network of distributed nodes, Strong Doge enables Al inferences to be
processed in a decentralized manner, ensuring that these Al Strong Doges are
not controlled by any single entity. This approach eliminates the vulnerabilities
associated with centralized Al infrastructures, such as service shutdowns, high
operational costs, and limited Strong Doge longevity.

Key to Strong Doge’s innovation is its tokenized ecosystem, where partici-
pants contribute GPU compute power to support Al inferences and are rewarded

with the Strong Doge token. This incentive system creates a sustainable envi-
ronment for the development of decentralized Al Strong Doges. The protocol
also supports interoperability, allowing multiple AT models to operate within
the network and interact with each other using Strong Doge tokens, facilitating
a collaborative Al ecosystem.

At the heart of Strong Doge is the Inference Virtual Machine (IVM), a decen-
tralized network where nodes host and persist Al Strong Doges autonomously.
Unlike traditional Al infrastructure, where Strong Doges are transient and can
be switched off by a centralized authority, Strong Doge ensures that Al Strong
Doges continue to function independently and continuously. This allows them
to develop an ongoing state, enabling the Strong Doges to evolve and grow their
intelligence over time.

Today’s Al landscape is dominated by centralized models, which come with
several critical drawbacks: high inference costs, vulnerability to being shut
down, and the temporary nature of Strong Doges, which are often created and
destroyed with each inference. Strong Doge addresses these problems by decen-
tralizing Al operations across a global network of nodes. The platform ensures
that AT Strong Doges can persist and develop over time, unlocking new possi-
bilities for autonomous, evolving intelligence.

Through this innovative combination of blockchain, Al, and decentralized
computing, Strong Doge introduces a future where Al is open-source, persistent,
and entirely free from centralized control.

2 Content
2.1 AI Inference

2.1.1 Centralized Processing

Centralized processing is a model in which all data processing and computational
tasks are handled by a single central server or system.

Advantages

e Simplicity: The Centralized systems are easier to manage and maintain
because all operations are handled in one place. This reduces the complex-
ity of managing multiple servers or nodes, leading to streamline system
administration. With this in mind, deployments and updates are more
straightforward since all software configurations, and updates are applied
to a single location, minimizing version control issues or discrepancies
across a distributed network.

e Resource Utilization: Centralized systems can be specifically optimized
for the hardware they are built on, such as high-performance CPUs or
GPUs, which can lead to enhanced performance. Resource allocation is
also more efficient in a centralized setup, as there is no need to manage or

distribute resources across multiple nodes. This allows administrators to
focus on maximizing the capacity of a single system.

e Security: Security is another area where centralized processing excels.
Since all data is stored and processed in one location, it is easier to im-
plement robust security measures such as firewalls, encryption, and access
control mechanisms. The smaller attack surface compared to distributed
systems means there is less risk of a security breach. Centralized systems
also benefit from simplified data consistency. All data is stored in a single
location, making it easier to manage and ensuring consistent data across
the system without the need for synchronization between nodes. Backup
and recovery processes are likewise more straightforward since everything
is in one place, making disaster recovery efforts less complicated.

e Scalability: in centralized processing, scalability can also be more manage-
able in some cases. It is relatively simple to scale up a centralized system
by adding additional processing power or storage to the central server.
This vertical scaling approach can meet growing demands efficiently, at
least up to a point.

Disadvantages

e Single Point of Failure: Since the entire system depends on the availability
of the central server, any failure—whether due to hardware issues, cyber-
attacks, or other disruptions—can bring the entire system down. This
high reliance on a single node makes downtime a major concern and can
severely impact both users and services.

e Scalability Limitations: Although scaling up is possible, it becomes in-
creasingly expensive and inefficient as the system approaches the physical
limits of its hardware. Centralized systems may also struggle to handle
large volumes of concurrent requests, which can result in performance
bottlenecks and slow down processing.

e Latency: Latency is another issue, especially for users or devices that are
geographically far from the central server. The delay in data transmission
can lead to slower response times, reducing the system’s overall efficiency.
Furthermore, centralized processing is often inflexible, as any changes or
updates to the system require modifications to the central server, which
can lead to downtime or delays.

e Bottleneck: Centralized systems can become bottlenecks as all incoming
requests must pass through a single point. As the system’s load increases,
this can slow down operations, particularly during peak usage periods. In
summary, while centralized processing offers simplicity, security, and re-
source optimization, it is limited by scalability issues, latency, and the risk
of system-wide failures. These limitations highlight the growing need for

decentralized solutions that can overcome the inherent weaknesses of cen-
tralized models, particularly as Al and computational demands continue
to evolve.

2.1.2 Distributed Processing

Advantages

e Scalability: Unlike centralized systems, which can face physical and cost
limitations when scaling up, distributed processing allows for ”scaling out”
by adding more nodes to handle increased workloads. This enables the
system to manage large volumes of data and traffic more efficiently, making
it an ideal solution for applications that require processing power to grow
with demand.

e Fault Tolerance: In a distributed system, the failure of one or even several
nodes does not necessarily bring down the entire network. Redundancy is
built into the system, meaning other nodes can take over the workload of
a failed node, ensuring continued availability and reliability. This makes
distributed systems much more resilient compared to centralized models,
which are highly vulnerable to single points of failure.

e Lower Latency: Distributed processing also addresses the issue of latency
by allowing data to be processed closer to where it is generated or where
users are located. This reduces the time it takes for requests to be pro-
cessed and enhances real-time data processing and analysis. For appli-
cations that require immediate response times, such as financial trading
platforms or live monitoring systems, distributed architectures can signif-
icantly improve performance by minimizing delays.

e Increased Flexibility: Individual nodes in the network can be updated,
modified, or replaced without impacting the entire system, allowing for
easier maintenance and upgrades. This flexibility also extends to re-
source utilization. Distributed systems can tap into underutilized re-
sources across multiple nodes, optimizing the efficiency of the network
and ensuring that computing power is not wasted.

Disadvantages

e Complexity: One major disadvantage is the increased complexity involved
in designing, implementing, and managing such systems. Distributed sys-
tems require sophisticated orchestration tools to ensure that tasks are
allocated correctly and that the system operates smoothly across multiple
nodes.

e Data Consistency: managing data consistency across a distributed net-
work can be difficult. Since data is often stored in multiple locations, syn-
chronization mechanisms must be in place to resolve conflicts and maintain
consistency.

e Network Overhead: Another drawback of distributed processing is the po-
tential for network overhead. Communication between nodes introduces
additional latency and can cause bottlenecks if the network is not opti-
mized for high-throughput tasks. Furthermore, network failures can dis-
rupt communication between nodes, which can impair processing capabil-
ities or even result in data loss if not properly managed.

e Security Challenges: With data and processing spread across multiple
nodes, the attack surface increases, making it more difficult to safeguard
the entire network. Distributed systems require robust security protocols
to manage data transfer, ensure access controls are properly enforced, and
protect the system from malicious attacks.

e Higher costs: distributed processing can be more expensive than central-
ized alternatives. The need to maintain multiple nodes, networks, and
security measures increases operational costs. While distributed systems
offer long-term benefits like scalability and fault tolerance, the initial in-
vestment in infrastructure and ongoing management can be significant.

2.2 Edge Nodes for Computation
2.2.1 Measuring Computation Capabilities

Strong Doge utilizes the Inference Virtual Machine (IVM), a decentralized net-
work where nodes autonomously host and maintain AI Strong Doges. By lever-
aging the Strong Doge network, users can register their nodes and catalog their
compute power to perform inferences on local hardware. To assess the per-
formance of a user’s compute resources, Strong Doge specifically measures the
characteristics of their GPU [1].

The reason GPUs are used as the primary compute resource for Strong
Doge is that they are critical for high-performance computing tasks. Unlike
CPUs, which are optimized for general-purpose tasks, GPUs are designed to
handle numerous parallel operations simultaneously, making them ideal for pro-
cessing large datasets and complex algorithms. However, GPU performance
varies across different devices. To evaluate GPU efficiency, several tests were
conducted to compare the calculation speed and performance of GPUs versus
CPUs:

e Testing host/GPU bandwidth.
e Testing memory intensive operations.
e Assessing computationally intensive operations.

The first test measures how quickly data can be transferred to and from the
GPU. Since the GPU is connected to the PCI bus, its performance largely
depends on the speed of the PCI bus and other devices using it. There are ad-
ditional overheads, such as function calls and array allocation time, which affect

Data Transfer Bandwidth

Send to GPU
92 Gather from GPU

Transfer speed (GB/s)
Ll

l:o“ 108 18 107 108 10°

Array size (bytes)

Figure 1: Data Transfer Bandwidth

Read+write Bandwidth

10* 10° 108 107 108 10°

Array size (bytes)

Figure 2: Read and Write Bandwidth

the measurements. These factors are typically present in real-world scenarios,
making their inclusion in the tests valid. In this case, the GPU tested supports
PCI Express®) version 4.0, which offers a theoretical bandwidth of 1.97 GB/s
per lane, resulting in 31.52 GB/s for 16-lane slots, like those used by NVIDIA®)
compute cards. The test shows that with smaller datasets, overheads dominate,
while with larger datasets, the PCI bus becomes the limiting factor. The next
test focused on memory-intensive operations:

The results demonstrate that GPUs can read from and write to their memory
significantly faster than they can retrieve data from the host system. To maxi-
mize performance, it is crucial to minimize data transfers between the host and
GPU. Ideally, data should be sent to the GPU, processed there, and returned to
the host only after computations are complete. Even better is generating data
directly on the GPU to reduce transfer overheads.

Lastly, computationally intensive operations were tested. For operations
involving a high number of floating-point calculations per element, the speed

Double precision matrix-matrix multiply

GPU

200

150

Calculation Rate (|

8

50

0103 104 10° 106 107 108

Matrix size (numel)

Figure 3: Double Precision Matrix-Matrix Multiply

of memory access becomes less critical, and the performance is instead limited
by the number and speed of the floating-point units. These operations are
considered to have high ”computational density.”

A common example is matrix-matrix multiplication, where two NxN ma-
trices are multiplied, requiring a large number of floating-point calculations
(FLOPS(N)=2N3-N2) and leading to a high computational density.

Two input matrices are read and one resulting matrix is written, for a total
of 3N2 elements read or written. This gives a computational density of (2N-
1)/3 FLOPS/element. Contrast this with plus as used above, which has a
computational density of 1/2 FLOP /element.

From these tests, it is clear that GPUs are superior and highly efficient for
running computations in Strong Doge. Key highlights include:

e GPUs can read from and write to their memory much faster than the host
CPU.

e Given large enough data, GPUs can perform calculations much faster than
the host CPU.

2.2.2 Tradeoffs of compute platform

What is computing platform Computing platform is a conducive data en-
vironment that enables a software application to launch and run smoothly on
a computer system. In other words, a computing platform is a viable company
software framework or hardware architecture where fully functional software can
run seamlessly. They are a type of technology platform, are next-generation
systems that serve as powerful tools that let us use methods and models with
geographic data.

These platforms come in different types, from simple ones in our phones to
super advanced ones like supercomputers. They can be standalone computers

or part of complex networks catering to various user needs and workloads for
processing data.

Common computing platforms include features like graphical user interfaces
(GUI) relevant for activities like designing, configuring, customizing, and han-
dling data received.

The operating system (OS) plays a significant role in computing platforms,
ensuring efficient communication between the central systems of the computer
hardware architecture or edge infrastructure.

Types and tradeoffs Compute platforms can be categorized based on their
nature: Physical/ On-premise compute platform

These platforms consist of dedicated hardware (e.g., servers, mainframes)
located in an organization’s own data center or facilities. This means that
the softwares and utilities are installed and deployed on the company’s server
instead of accessing via the internet. On premise allows organizations an overall
control over their data and adjusts their product to their needs.

Advantages:

e Full Control: Organizations have complete control over hardware, soft-
ware, and security, allowing for customized configurations.

e Data Security: Since the infrastructure is managed on-site, organizations
can implement stringent security protocols, which may be beneficial for
industries with strict compliance requirements (e.g., healthcare, finance).

e Latency and Speed: For tasks that require extremely low latency or need
to process large volumes of data locally, on-premise setups can offer faster
processing since there’s no reliance on external networks.

Disadvantages:

e High Initial Costs: On-premises infrastructure has high capital expenses
(CapEx), requiring significant upfront investments in hardware, setup, and
data center maintenance.

e Limited Scalability: Scaling on-premises infrastructure can be slow and
costly, requiring the purchase and installation of new hardware, which
can also lead to underutilization if demand decreases.

e Maintenance and Upkeep: Organizations are responsible for ongoing main-
tenance, upgrades, and security patches, which can require a dedicated IT
team and incur long-term operational costs.

e Disaster Recovery: Handling backups, redundancy, and disaster recovery
planning is the responsibility of the organization, which can be complex
and expensive.

Tradeoffs:

e Customization vs. Flexibility: On-premises platforms offer customization
options that cloud-based platforms may not, but this comes at the cost of
flexibility in scaling up or down based on demand.

e CapEx vs. OpEx: On-premises solutions involve more capital expenses,
while cloud platforms usually shift costs toward operating expenses (OpEx).

Cloud platform Cloud platforms are digital spaces where software or service
applications are built and launched using cloud computing infrastructure. They
use virtualization tech to make many virtual machines (VMs) on one server,
allowing different customers to run their operating systems and apps on a single
server.

People can access these computing services from public and private cloud
platforms, including advanced options like Google Distributed Cloud Edge. It
is the same as having a shared computer that can do different tasks for different
users, making it versatile and accessible.

Cloud platforms work smartly using one computer to do many tasks simul-
taneously. This scenario is like having an edge computing platform, a shared
personal computer that can adapt to different needs.

A cloud platform is flexible and efficient because it divides the work among
various virtual computers on the same server.

Advantages:

e Scalability: Cloud platforms allow for rapid scaling, both horizontally
(adding more servers) and vertically (upgrading server capacity), depend-
ing on current demand. This “elasticity” is ideal for variable workloads.

e Lower Initial Costs: Instead of large upfront investments, cloud platforms
use a pay-as-you-go model, meaning organizations only pay for the re-
sources they actually use, reducing CapEx.

e Maintenance-Free: Cloud service providers manage hardware maintenance,
security, and infrastructure upgrades, freeing organizations from these re-
sponsibilities.

e Global Reach: Major cloud providers have data centers across the globe,
allowing users to deploy services closer to customers, improving perfor-
mance and meeting local regulatory requirements.

Disadvantages:

e Ongoing Operational Costs: While cloud platforms reduce upfront CapEx,
long-term operational expenses (OpEx) can become substantial as appli-
cations scale. These costs can grow unpredictably if not closely monitored.

e Data Security and Compliance: While cloud platforms provide security
features, the organization doesn’t have full control over the infrastructure.
For industries with strict regulatory compliance, entrusting sensitive data
to third-party cloud providers may be challenging.

Latency: For tasks that require extremely low latency, reliance on external
networks and geographically distant data centers can introduce delays,
which may not be ideal for real-time applications like financial trading or
gaming.

Vendor Lock-In: Once integrated into a specific cloud ecosystem (e.g.,
AWS or Azure), migrating to a different platform can be technically chal-
lenging and costly due to proprietary services and APIs.

Tradeoffs:

CapEx vs. OpEx: Cloud computing shifts costs from CapEx (hardware
purchases) to OpEx (ongoing usage fees), making it easier to scale without
huge upfront investments.

Flexibility vs. Control: The cloud provides greater flexibility and scalabil-
ity, but at the cost of reduced control over the underlying infrastructure
and security settings.

Pay-as-You-Go vs. Long-Term Predictability: Pay-as-you-go pricing can
be beneficial for fluctuating workloads but may lead to higher expenses in
the long term if workloads are steady and large-scale.

Edge compute platforms Edge computing platform is a decentralized com-
puting model where data processing and computing tasks are performed closer
to the data source or the end user, rather than relying solely on centralized
cloud or data center infrastructures. The “edge” refers to the location where
computing happens—at the ”"edge” of the network, near devices like sensors,
smartphones, or IoT devices. This reduces the amount of data sent to a central
server, thereby minimizing latency, bandwidth usage, and response times, which
is essential for applications that require real-time decision-making.

Advantages:

Reduced Latency: Since processing occurs near the data source, edge
computing significantly reduces latency, making it ideal for real-time ap-
plications (e.g., autonomous vehicles, industrial automation, healthcare).

Bandwidth Efficiency: By processing data locally, edge platforms mini-
mize the amount of data sent to the cloud or central data centers, which
is beneficial for areas with limited network connectivity or for devices with
high data output (e.g., video cameras).

Enhanced Privacy: Sensitive data can be processed at the edge without
sending it to the cloud, which can help meet privacy regulations and reduce
the risk of exposure during data transmission.

Disadvantages:

Limited Compute Power: Edge devices often have limited processing power
compared to centralized cloud servers. They may struggle to handle com-
plex tasks that require high computational capacity.

10

e Distributed Management Complexity: Managing a large number of dis-
tributed edge devices can be challenging. Ensuring all devices are up-to-
date, secure, and functioning correctly requires significant infrastructure.

e Security Risks: Edge devices, which are often placed in less controlled
environments (e.g., in factories, vehicles, or public spaces), are more vul-
nerable to physical tampering or cyberattacks.

Tradeoffs:

e Latency vs. Compute Power: Edge computing reduces latency but sacri-
fices some processing power compared to centralized platforms. For appli-
cations needing high performance and real-time responses, this is a worthy
tradeoff.

e Centralization vs. Distribution: While edge computing reduces reliance on
central servers, it introduces complexity in managing multiple distributed
devices.

e Privacy vs. Complexity: Processing data locally improves privacy, but at
the cost of increased management and security risks across numerous edge
devices.

Distributed Compute Platforms

These spread computational tasks across multiple machines, either on-premise
or cloud-based, to perform large-scale data processing. E.g. Apache Hadoop,
Kubernetes, serverless platforms like AWS lambda

Advantages:

e Scalability: Distributed platforms allow organizations to scale computa-
tional tasks across many nodes, handling massive datasets or workloads
(e.g., big data processing, machine learning models).

e Fault Tolerance: If one node fails, others can take over the workload,
improving the reliability and availability of the system.

e Cost Efficiency: Distributed platforms can use commodity hardware or
cloud resources, allowing for more cost-effective scaling compared to rely-
ing on large, monolithic systems.

Disadvantages:

e Complexity: Managing a distributed system involves significant complex-
ity in coordinating tasks across multiple nodes, ensuring data consistency,
and handling node failures.

e Latency: Although distributed platforms can improve performance by par-
allelizing tasks, there may still be delays in communication between nodes,
especially if they are geographically dispersed.

11

e Network Dependencies: Distributed platforms often rely heavily on net-
work performance, and slow or unreliable networks can degrade overall
system performance.

Tradeoffs:

e Fault Tolerance vs. Latency: Distributed platforms offer better fault tol-
erance but can introduce latency and overhead in communication between
nodes.

e Performance vs. Complexity: Distributed computing offers the potential
for higher performance by spreading tasks across multiple machines, but
the added complexity in managing a distributed system requires advanced
skills and tools.

e Scalability vs. Simplicity: While distributed systems are scalable, they
introduce challenges in maintaining consistency, reliability, and ease of
management.

2.2.3 Doge as an edge compute platform

The Dogechain is central to the Strong Doge ecosystem, serving as the primary
infrastructure for rewarding computation across distributed nodes and clusters.
This platform enables a tokenized approach, whereby nodes, clusters, and in-
dividual users receive cryptocurrency incentives for their contributions to edge
computing tasks.

Rewards and Task Completion on Dogechain

In this ecosystem, whenever a node, cluster, or user completes a major task
or inference process, the Strong Doge platform generates rewards in cryptocur-
rency, offering transparent and secure compensation. The Dogechain plays a
crucial role here, as it tracks and verifies task completions across distributed
nodes in real-time. This design ensures that contributions are logged immutably,
enabling fair and traceable reward distribution.

Key aspects of this reward system include:

e Transparent Contribution Tracking: The Dogechain logs completed tasks
at each node, maintaining a record of contributions that is both public
and unchangeable, fostering accountability.

e Immediate Coin Compensation: Upon completion of a major computa-
tion, the contributing entity (node, cluster, or user) receives coins directly
on the Dogechain, encouraging real-time contributions and further com-
putation within the network.

e Scalability Through Decentralization: By using Dogechain, Strong Doge
leverages a decentralized, scalable network to support growing demand for
computation. This approach reduces reliance on a central authority and
allows the network to grow organically by adding more nodes as needed.

12

Through this edge computing platform, Strong Doge aligns incentives across
its participants, rewarding each with tangible assets in a secure, decentralized
manner. This setup not only enhances the platform’s efficiency but also incen-
tivizes sustained network participation and scalability.

2.3 Inference Sharding
2.3.1 Utilization of Exo Labs

Overview of Exo Generative Al, including models for image and video gen-
eration like Midjourney and DALL-E 2 (based on diffusion models) or lan-
guage models such as openAl-ol-preview, Gemini-1.5-pro, and Claude-3.5-sonet
(based on transformer models), is being rapidly advanced by major tech com-
panies. These models are vastly more complex than traditional ones, often
containing hundreds of billions or even trillions of parameters.This makes it dif-
ficult for small and medium-sized businesses or individual users to run these
models effectively.

Exo addresses this challenge by enabling the use of GPUs from various de-
vices, such as Linux and macOS computers, as well as mobile devices running
Android and iOS. Through Exo, these smaller GPUs are combined into a sin-
gle, larger virtual GPU with a VRAM capacity equivalent to the sum of all the
GPUs involved. This allows users to run large-scale Al models without needing
to invest in costly, high-end GPUs.

Main Components of Exo Device Discovery and Connection Exo es-
tablishes peer-to-peer connections between machines, with gRPC as its default
protocol.

The gRPC (Google Remote Procedure Call) library/protocol is based on HTTP/2

Advantage

e Facilitates device connections and remote function calls, making it ideal
for testing and distributed inference tasks.

e Ensures sequential data transmission with correct packet order and in-
tegrity.

e TLS integration provides data security.

e Uses protobuf for encoding, reducing data size during transmission and
improving efficiency.

Disadvantages
e Protobuf encoding requires device resources.

e Configuration is complex, potentially increasing deployment and mainte-
nance time.

e Relies on a stable network for accuracy.

13

The Tailscale library creates a virtual private network (VPN) using the Wire-
Guard protocol
Advantage

e Provides security independent of the network.

e Easy to configure and ensures data integrity.

Disadvantages

e Performance depends on network bandwidth and stability.

e Encryption overhead makes it unsuitable for real-time applications.

UDP Protocol
Advantage

e High performance and low latency, ideal for real-time inference data trans-
mission.

e Consumes fewer system resources as it doesn’t require encryption or packet
acknowledgment.

e Simple deployment with no complex configuration.
Disadvantages

e Lacks security and data integrity guarantees, with the potential for packet
loss.

Exo’s Node Division Mechanism (A node here is understood as a
device, each device can have multiple GPUs)
Exo supports only one GPU per node, even on machines with multiple GPUs.
This limitation may stem from two factors: first, data processing and loading
are handled through RAM before being transferred to the GPU, a challenge
yet to be fully addressed. Second, despite using separate virtual environments,
some core deep learning library runtimes still require shared resources, leading
to conflicts. However, users can specify which GPU participates in the system,
making that GPU the node.
Exo’s Distributed Inference
Exo uses Model Parallelism to run models, specifically employing the shard-
ing method after training. Common file formats for model sharding include
“safetensors” (a highly secure format that contains only model weights, with
no code) and .bin (a more flexible format that can include additional data and
code, though it is slower to load and less secure than safetensors). Shard files
are typically named in a format like model-name_x**-of-**.safetensors or
model-name_**-of—**.bin, with layer location details stored in accompanying
JSON files such as model-name . safetensors.index. json or model-name.bin. index. json.
Information about the layers within the shards will be contained in JSON
files such as model-name.safetensors.index. json or model-name.bin.index. json.

14

4 mlabonne @ leaderboard-pr-bot R 368c8ed

gitattributes

README.md

config.json

generation_config.json 5
model-00001-0f-00004.safetensors & @ LUFS
model-00002-0f-00004.safetensors & @ LS
model-00003-0f-00004.safetensors & @ LS
model-00004-0f-00004.safetensors s @S
model.safetensors.index.json s

special_tokens_map.json
tokenizer.json

tokenizer_config.json

© huggingface.co .

Iwanne@demo: - Documents/2_exo_root/exo

15

m twinb@TwinB: ~/Project/2_exo_root/exo Q

53120, 55800

d:
.107:8000

t served at:
.167:8000/v1/chat/completions
0.1:8000/v1/chat/completions

hard(model_id="nlabonne/Meta-L1ana-3.1-88-Instruct-abliterated"
btart_layer=16, end_laye _layers

, laye attention.wq.weight
, laye attention.wk.weight
, laye attention.wv.weight
GB, layers.o.feed_forward.w2.weight
, layers.1.attention.wq.weight
.1.feed_forward.w1.weight
.1.ffn_norm.weight
, layers.2.attention.wk.weight
, layers.3.attention.wv.weight
, layers.4.attention.wv.weight
s.4.ffn_norm.we
attention.wv.weight
attention.wq.weight
attention_norn.weight
attention.wk.weight
attention.wq.weight
, layers.11.feed_forward.wl.weight
, layers.13.attention_norn.weight

Using the layer location information, Exo only downloads the necessary
shards, loading the corresponding layer weights into the model.

For example: 2 shards 01 and 02 containing layers 0 to 15 will be loaded
onto machine 1, while 2 shards 03 and 04 containing layers 16 to 31 will be
loaded onto machine 2.

When an inference request is sent to the cluster consisting of the two nodes
above, the data flow will run sequentially in a circle through machine 1 (layers
0-15), then transfer the results from machine 1 to machine 2 (layers 16-31). The
final result will be received and displayed on the chat screen of machine 1.

To manage model loading, Exo follows a three-step process:

e Create a model with random weights.
e Load weight from the state_dict file

e Load new weights into the model.

This process currently doubles RAM and VRAM usage. To mitigate this,
Exo suggests creating the model with a virtual coefficient (e.g., a meta tensor
data-type) in step 1, and only performing steps 2 and 3 after. Additionally,
recalculating the size of each layer (in MB or GB) will allow for more efficient
workload distribution across nodes, instead of simply dividing by layer count.

The processing power of each node can be assessed using its TFLOPS (cal-

culated automatically via benchmarking), which helps ensure optimal workload
distribution.

16

collect metadata for each tensor
for name in tensor_names:
tensor_data = f.get_tensor(name)

1
2
3
4
s
6
7
s
5
3
1
12

30
31
2
n
34
35
36

shape = tensor_dat.

shape

dtype = tensor_data.dtype

¥ calculate the tensor size in bytes based on dtype

total_elenents = 1
for dim in shape:

total_clenents *= dim

Af dtype == torch.float32:

element_size = 1

elir dtype == torch.float1é or dtype == torch.bfloatis:

element_size « 2

el

se:
ratse ValueError(f unsupported

tensor_stze = total_elements * element_stze

s,
"ch.cuda

def _benchnark_tflops(n, dtypes' 712, num_tterationssi0o):
= None

device = torch.device(cuc

else:

devi
A dt, f2':

torch.device(cpu")

ype :
A = torch.randn((n, n), device-device, dtypestorch.float3z)
B = torch.randn((n, n), device=device, dtype=torch.float3z)

Uf dtype == 10 :

A = torch.randn((n, n), devicesdevice, dtypestorch.floatis)
B = torch.randn((n, n), devicesdevice, dtypestorch.float16)

€ULF diype - Lnta :
A = (torch.randint(-12
B = (torch.randint(-17

Use:
ratse ValueError(“Unsupported data type. Use 'f32',
end:

Af back

1

7, (n, n), device-devic

start_time = tine.perf_counter()
for _in range(nun_tterations):

€ - torch.nn(4, 8)

backend. synchronize()

clapsed_tine = time.perf_counter() - start_tine

olse:
start_time = tine.perf counter()
for _ tn range(nun_tterations):

C = torch.nn(A, 8)

elapsed_tine - tine.perf_

[OR

flops. ation = 2 *

ounter() - start_tine
.)

total_flops = flops_per_iteration * num_iterations
e

37
38 def benchrark():

kS
a
a
a2

Tp32-_benchmark_tflops(2518)

op:
ops = (total_flops / elapsed_tine) / 112
return float(f (tflops:.29)")

p16._benchmark_tflops(2044, diypes (14')
int8e_benchmark tflops(704s, diypes ni4')
T

return (fp32, fpio, ints)

17

(n, n), device-device, dtype-|

dtype-

f1e',

.

extend this to support nore d-tlIlypes if needed

dtype: (dtiypel”)

rch. int8)).
. L

oat()
0at ()

The number of nodes in a cluster must also be balanced—too few nodes
may prevent the model from being loaded, while too many can cause latency
due to excessive data movement. In case of node failure, the failed node must
be replaced with one containing the necessary shard, or the shard must be
downloaded again.

By assigning specific roles to each node in a cluster, throughput can be
increased. Once a node finishes processing its part of one inference request, it
can begin handling another request, enhancing efficiency.

2.3.2 Network Scaling

Peer-to-peer with STUN STUN (Session Traversal Utilities for NAT) is a
network protocol that allows devices behind a NAT (Network Address Transla-
tion) to discover their public IP address and port number assigned by the NAT.
This information is then used to establish direct connections with other devices
on the internet.

In simpler terms: STUN acts like a "mirror” that reflects your IP address
and port on the internet. When you are behind a NAT, you don’t know your
public address. STUN tells you that.

Let’s assume there are two nodes behind NATSs that need to connect to each
other over the internet. Here’s how they would use STUN:

e Node 1 sends a STUN request to a STUN Server on the internet.

e The STUN Server receives the request and replies to Node 1 with its public
IP address and port number assigned by the NAT Router.

e Simultaneously, Node 2 also sends a request to the STUN Server and
receives its own public IP and port.

e Once both Node 1 and Node 2 know each other’s public IP addresses and
ports, they can establish a direct connection, bypassing the NAT Routers.

Network Building The idea of building a network where each machine in the
system is a node, grouping these nodes together, and using them as to inference
a Model is called a cluster. The network operates based on a pipeline parallelism
mechanism. (Reference in “Exo”)

To better illustrate the concept of pipeline parallelism in the system: The
system consists of multiple clusters, each running a model. The model is divided
into smaller parts called shards, and each shard contains different layers of the
model. Nodes within a cluster are responsible for processing certain layers of
that model. In a cluster, these nodes are connected in a sequential chain, re-
ferred to as a pipeline. When a node completes processing its assigned layers,
the result is passed to the next node. At this point, the completed node no
longer needs to track the subsequent processing of the result and can imme-
diately take on a new processing task from the system. This approach forms
pipeline parallelism, where multiple requests can be processed simultaneously,

18

Number of IPUs (p)
L

[Nm. @, O J @
[J

thus increasing throughput (the number of inferences the cluster can handle
within a given time period). An extension of this is that a node is not limited
to receiving requests only from the cluster it belongs to; it can also process re-
quests from other clusters, as long as it correctly processes the layers it has been
assigned within the model. This increases the system’s flexibility and optimizes
resource allocation. [2]

The network needs a statistics table about the types of models supported,
as well as information about shards, shard size, number of shards, resource
requirements for each shard, and pricing, so that users joining the system can
plan accordingly.

Based on ideas developed from Exo, assume that the system needs to build
a cluster to infer Model 1 (this model has 4 shards and a total of 16 layers). The
layers within each shard are illustrated in the figure below. Currently, there are
6 nodes registered in the system, and in the downloaded Model 1 directory on
each node, nodes 1 through 5 already have some shards, while node 6 has none.

e Configuration 1 for the cluster: Use layers 1-4 from node 1, layers 5-8 from
node 5, layers 9-12 from node 4, and layers 13-16 from node 3.

e Configuration 2 for the cluster: Use layers 1-8 from node 1 (since the GPU
on node 1 is powerful enough to load more layers), layers 9-12 from node
4, and layers 13-16 from node 3.

e Configuration 3 for the cluster: Use layers 1-6 from node 1, layers 7-8 from
node 2 (since the GPU on node 2 is weaker and can only load 2 layers),
layers 9-12 from node 4, and layers 13-16 from node 3.

19

Figure 4: Using the collected information, the system can propose several con-
figurations for the cluster to infer Model 1, as shown in the figure.

Figure 5: Illustration of the network with n Clusters and m Models

e Configuration 4 for the cluster: Use layers 1-4 from node 1, layers 5-8 from
node 5, layers 9-12 from node 4, and since node 6 does not have layers
13-16, these will need to be downloaded (this should be avoided as it will
take time to download).

With the 4 proposed configurations mentioned above, Configuration 1 should
be used when the TFLOPS values, representing the computational power of the
nodes in the cluster, are relatively equal. Configuration 2 is used when the
TFLOPS and VRAM of Node 1 are sufficient to load and process the first 8
layers. Configuration 3 is applicable when the TFLOPS and VRAM of Node 1
can handle the first 6 layers, while Node 2, with lower TFLOPS and VRAM,
can only process 2 layers. Configurations 1, 2, and 3 should be prioritized for
building the cluster, as they make optimal use of the available resources on each
node. Configuration 4, however, should be avoided because it will require extra
time to download the appropriate shard for the empty Node 6.

Let’s assume in the case where the cluster running Model 1 encounters an
error and node 5 (containing layers 5-8) is disconnected. In that case, the
cluster needs to use nodes with high TFLOPS and VRAM already available in
the cluster, or replace them with one or more suitable nodes. This will require
time to set up new connections and may even take additional time to load the
appropriate shard on the new node.

The cluster can resolve this in several ways.

Edge Node performance Verification To evaluate the processing perfor-
mance of each node, we can rely on the TFLOPS value with operations on 32-bit
floating-point numbers (FP32), 16-bit floating-point numbers (FP16), or 8-bit
signed integers (int8).

20

Cluster 1 - Model 1

J8ue

Node 1
Layer 1-4

Node 5
Layer 5-8

Node 4
Layer 9-12

Node 3
Layer 13-16

21

Cluster 1 - Model 1

Node 1
Layer 1-4

Node 2

Node 4
Layer 9-12

Node 3
Layer 13-16

o S

Figure 6: Replace layers 5-8 of Node 5 with layers 5-8 from Node 2. The best-
choice is that Node 2, used as a replacement, has a TFLOPS computing power
similar to Node 5 and enough VRAM to load layers 5-8.

22

Cluster1-fix1

Node 1
Layer 1-4

Node 1
Layer 5-6

Node 2
Layer 7-8

Node 4
Layer 9-12

Node 3
Layer 13-16

Jeauguys

Figure 7: Replace layers 5-8 of node 5 with layers 5-6 from node 1 and layers
7-8 from node 2. It should be used if Node 1 has sufficiently high TFLOPS
and enough VRAM to load additional layers 5-6. Ideally, if Node 1 can handle
all layers 1-8, then Node 2 won’t be needed, that would be the best option;
otherwise, we need to use the weaker Node 2 to process layers 7-8.

Cluster 1 - Model 1

Node 1
Layer 1-4

Node 6

(need downloaded)

Node 3
Layer 13-16

Node 4
Layer 9-12

. S

Figure 8: Replace them by downloading and loading new shards from node 6 (if

no suitable node with the required shards exists). This case should be avoided
because loading a shard can take a long time.

CHIP_FLOPS = {
y.com

betueen variants of M3 Max and M3 Pro, we pick the lower one to be

0ps (£032-2.29°TFLOPS, £p16=4.58°TFLOPS, intB=3.16°TFLOPS)
Flops(£p32+5.30°TFLOPS, #p16=10.60°TFLOPS, int8=21.20*TFLOPS),
(#932+10.60°TFLOPS, £p16=21.20*TFLOPS, int8=42.40°TFLOPS),
pS(#p32-21.20*TFLOPS, £p16=42.40°TFLOPS, int8=84.80°TFLOPS)
5(£p32-3 .55 TFLOPS, #p16=7.10°TFLOPS, intB=14.20°TFLOPS)
Flops(£932+5.68*TFLOPS, £p16=11.36°TFLOPS, int8=22.72+TFLOPS),
0ps(#932+13.49°TFLOPS, #91626.98*TFLOPS, ints

L96°TFLOPS),
ps(£p32=26.98*TFLOPS, £p16=53.96°TFLOPS, int8=107.92°TFLOPS),
5(032+3.55°TFLOPS, #p16=7.10°TFLOPS, int8=14.20°TFLOPS),
0ps(£p32=14.20%TFLOPS, fp16=28.40*TFLOPS, int8=56.86°TFLOPS),
0ps(#p32=4,97+TFLOPS, fp!

9.94+TFLOPS, int8=19.88°TFLOPS),
<(£032-3.55°TFLOPS, #p16=7.10°TFLOPS, int8=14.20°TFLOPS),

Lops (£p:
Lops (fp:
1ops (fp:
Lops(p32:

69+TFLOPS, £p16=1.38*TFLOPS, int
75TFLOPS, fp16=1.50<TFLOPS, in
L37*TFLOPS, £p16=2.74*TFLOPS, inf

76°TFLOPS),
00°TFLOPS),
L48*TFLOPS),
79°TFLOPS, #p163.58°TFLOPS, intB=7.16°TFLOPS),
€F1ops (£032=2.15°TFLOPS, £p16=4.30°TFLOPS, int8=3.60°TFLOPS),

1ops(£032=82.58°TFLOPS, #p16-165.16°TFLOPS, int8=330.32°TFLOPS),

Figure 9: Method 1: Identify the type of card used by the node, and then
it up in a dictionary file, for example

look

24

“Floatsz)

.float16)
float1s)

e, diype-torch.ints)). Moat()
ice, dtype-torch.ints)).float()

)

Figure 10: Method 2: Use an automatic benchmarking function.

Cluster performance in the network Verification Evaluating the pro-
cessing performance of a cluster within the network means determining the
processing efficiency of the model running in that cluster.

We can evaluate this based on several criteria:

e Latency: Test by entering a sample chat message, then measure the time
from when the token enters layer 1 on the first node to when the first result
token is produced at the last layer on the final node. Tlatency=tfirst-token-out-ttoken-in

e Data transfer time: The time it takes to transfer data between consecutive
nodes can also be tested by entering a sample chat message.

e Load balancing: The load value is measured by the ratio between the total
size of the layers loaded onto a node (see III.1.ii) and the computational
capacity in TFLOPS of the node (I11.3). The purpose of this load balanc-
ing value is to determine whether the workload (total weights) assigned
by the system to the nodes in a cluster is balanced in terms of processing
capacity in TFLOPS.

e Connection verification: Check connectivity by pinging the node or be-
tween nodes.

e There should also be statistics on the Success Rate of Requests sent to a
node, so that when the node participates in the network, a proper weight-
ing can be applied.

User Inference Process A user who wants to use the system to run a Gen-
erative Al model will first select from the available models that the system
currently supports (such as generative Al models for image generation, video,
or large language models). They then choose a cluster that is available on the

25

system for that model, or if a suitable cluster is not available, time will be needed
to create the cluster and download the model. The user can choose options that
fit their budget, and they can also check the performance of the cluster they
select. Finally, they can enjoy the results.

In the future, support could be expanded to include models available on
Hugging Face or from the user’s own sources, as long as they have the model
architecture file ready.

2.4 Privacy
2.4.1 Today’s All Seeing World

With centralized Al systems, especially in the case of generative language mod-
els like ChatGPT, Claude, or Gemini, user data and conversation history are
often recorded. Over time, these centralized Al systems become increasingly
aware of users’ behaviors and can develop detailed user profiles covering per-
sonal preferences, habits, and even sensitive information like health status and
financial details. This data could potentially be used for undesirable purposes,
such as targeted advertising, surveillance, or even selling the information to
third parties.

The vast amount of information held by these centralized Al systems raises
concerns about user privacy, while also making users increasingly dependent on
these systems.

A carefully designed distributed inference system can help mitigate these
risks by encrypting information (such as chat data) as soon as it enters the
system using text tokenization (turning text into tokens). Additional encoding
methods can also be applied to secure data transmission. In such a system, each
node in a cluster only has access to its specific task and does not know the full
scope of the work, thereby enhancing privacy and security.

2.4.2 Inference Layer

The inference layer is where the inference process takes place, and it is the most
vulnerable point in terms of privacy. This is where user conversations or private
data are sent and processed.

Although these conversations are called private, they are actually not private
at all because the inference layer is managed by centralized companies, meaning
that all conversation content is sent to these companies.

In a distributed system, encrypting data at the source, as well as ensuring
that each node only knows its own part of the task, can completely avoid this
issue.

2.4.3 Inference Provenance

In centralized systems, all information and inference results are monitored and
stored by a central organization. This makes it possible to trace the origin of
inferences and use data to find user profiles and their entire interaction history.

26

d, = \/(Ax - B)' + 4 - By)2

Figure 11: The distance used here is the standard 2D Euclidean distance

T;F;L(’JP.S'E

n

Y. TFLOPS,
k=1

W =W X

[

Figure 12: The load balancing formula.

In contrast, if a system is distributed with models restructured using shard-
ing, the inference process is divided and completed across nodes containing
separate shards. Tracking the origin of queries becomes difficult or even im-
possible. This distributed Strong Dogeing ensures that no one, not even the
participating nodes, can link the information they have to the user, thus pro-
viding comprehensive privacy protection.

2.5 Future Work
2.5.1 Network Latency Optimization

In a sharding-based distributed system, to optimize network latency, specifically
cluster latency for each inference, we can use the following solutions:

e Clustering based on geographic location: For example, if a query originates
from the USA, we should use or set up a cluster with nodes located in or
near the USA. Using the K-means clustering algorithm, we can select the
nearest cluster for the inference. This approach can improve the speed of
data transmission between nodes and enhance network stability.

e Load balancing to improve the processing capability of each node. The
processing speed of each node depends on two main factors: the assigned
workload and the computational capacity (TFLOPS). Suppose the total
weight of the model is W, Wi is the portion of weight assigned to node i,
TFLOPSI is the computational power of node i, and n is the number of
nodes in the cluster.

e Optimization problem for network load balancing: At any network state,
there is always a need to create a new configuration of m clusters to run n
different models. Thus, it’s essential to solve a Combinatorial Optimiza-
tion Problem, balancing the load from selecting nodes for each cluster to

27

distributing workloads among them. This is a complex problem and re-
quires a suitable heuristic algorithm to solve it (e.g., Genetic Algorithm,
Tabu Search, Ant Colony Optimization, etc. combined with some evalu-
ations).

2.5.2 Distributed Work Sharing Currency

AT models are continuously evolving, and each model performs different tasks.
For example, in the field of images, there are models for recognizing and classify-
ing images, as well as generating images. In the language field, there are models
for language generation, and similarly, there are various models in the field of
sound. These models have even progressed towards a multi-modal approach,
meaning they can handle different types of tasks simultaneously. Therefore, in
the future, when a user makes a request, it may require the collaboration of
many different AT models to provide a response.

When Al models complete their tasks, they will receive rewards. The sim-
plest way to do this might be through cryptocurrency owned by the distributed
platform. This allows each cluster and the nodes within that cluster to receive
rewards proportional to the work they have done, thus promoting transparency
and fairness in sharing computational resources among the nodes.

2.5.3 Enduring Strong Doge State

In centralized inference methods, the state of the Strong Doge is often limited
to a few inferences or queries, which means it can only perform specific tasks
without accumulating continuous experience. After each task, the Strong Doge’s
state is typically ”reset”, restricting its ability to learn and grow.

In contrast, decentralized inference allows the model’s state to exist con-
tinuously, enabling the Strong Doge to learn and accumulate experience over
time. Different models can also interact with each other. Each new interaction
with real data becomes part of the collective knowledge, helping the Strong
Doge improve constantly. This setup allows Al Strong Doges to develop supe-
rior intelligence by continuously learning from their environment and sharing
knowledge with other Strong Doges in the network.

This model sounds very ”futuristic” because it opens up the potential for
AT Strong Doges to evolve and grow without being limited by individual tasks.
They can become continuous learning entities, adapting to complex environ-
ments and accumulating experience to become increasingly smarter.

2.6 Conclusion

Strong Doge is at the forefront of a transformative approach to Al infrastruc-
ture, where decentralization, privacy, and community governance form the foun-
dation. By integrating Exo as its core, Strong Doge harnesses the power of
distributed GPUs, establishing peer-to-peer connections that allow widespread
access to Al models on decentralized networks. This structure not only scales

28

computational capacity but democratizes access, enabling a far broader range of
devices to participate in complex Al tasks that were once exclusive to centralized
corporate infrastructures.

With Exo’s Distributed Inference capabilities, Strong Doge transforms edge
computation, enabling a diverse set of devices to access decentralized mod-
els and provide extensive functionality that centralized models cannot achieve.
Dogechain plays a key role in managing shard distribution, validating tasks,
and offering transparent rewards, ensuring that all contributions—whether from
nodes, clusters, or individual users—are fairly compensated and securely recorded
on the blockchain.

Through this unique architecture, Strong Doge envisions a future where Al
systems are accessible, secure, and controlled by a community of participants
rather than a single centralized authority. This approach to open-source, per-
sistent, and resilient Al positions Strong Doge as a leader in building a more
equitable AT ecosystem. By providing continuous learning capabilities, enduring
model states, and an incentive-driven participation model, Strong Doge sets the
stage for an Al-driven world that prioritizes privacy, transparency, and shared
ownership.

References

[1] Measure CPU Component - |https://www.mathworks.com/help/
parallel-computing/measuring-gpu-performance.html

[2] Exo: Run your own AT cluster at home by Mohamed Baioumy.

[3] Filecoin: A Decentralized Storage Network, Protocol Labs - https://
filecoin.io/filecoin.pdf.

29

https://www.mathworks.com/help/parallel-computing/measuring-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/measuring-gpu-performance.html
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf

	Introduction
	Content
	AI Inference
	Centralized Processing
	Distributed Processing

	Edge Nodes for Computation
	Measuring Computation Capabilities
	Tradeoffs of compute platform
	Doge as an edge compute platform

	Inference Sharding
	 Utilization of Exo Labs
	Network Scaling

	Privacy
	Today’s All Seeing World
	Inference Layer
	Inference Provenance

	Future Work
	Network Latency Optimization
	Distributed Work Sharing Currency
	Enduring Strong Doge State

	Conclusion

